Chloroplast proteomics: potentials and challenges.

نویسندگان

  • Sacha Baginsky
  • Wilhelm Gruissem
چکیده

With the available Arabidopsis genome and near-completion of the rice genome sequencing project, large-scale analysis of plant proteins with mass spectrometry has now become possible. Determining the proteome of a cell is a challenging task, which is complicated by proteome dynamics and complexity. The biochemical heterogeneity of proteins constrains the use of standardized analytical procedures and requires demanding techniques for proteome analysis. Several proteome studies of plant cell organelles have been reported, including chloroplasts and mitochondria. Chloroplasts are of particular interest for plant biologists because of their complex biochemical pathways for essential metabolic functions. Information from the chloroplast proteome will therefore provide new insights into pathway compartmentalization and protein sorting. Some approaches for the analysis of the chloroplast proteome and future prospects of plastid proteome research are discussed here.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proteomics in stroke research: potentials of the nascent proteomics.

Among omics, the proteomics assumes a unique role in that it offers the effectors or actuators of a biological condition. This brief review attempts to summarize the development in a relatively new but important subdiscipline of proteomics, the so-called nascent proteomics, and its potential applications in stroke research. First, we will discuss a few examples of proteomics-led discoveries in ...

متن کامل

C4 photosynthetic machinery: insights from maize chloroplast proteomics

C4 plants exhibit much higher CO2 assimilation rates than C{}3 plants under certain conditions. The specialized differentiation of mesophyll cell and bundle sheath cell type chloroplasts is unique to C4 plants and improves photosynthetic efficiency. Maize (Zea mays) is an important crop and model with C4 photosynthetic machinery. 2DE and high-throughput quantitative proteomics approaches (e.g.,...

متن کامل

Chloroplast proteomics highlights the subcellular compartmentation of lipid metabolism.

Recent advances in the proteomic field have allowed high throughput experiments to be conducted on chloroplast samples and the data are available in several databases such as the Plant Protein Database (PPDB), or the SubCellular Proteomic Database (SUBA). However, the accurate localization of many proteins that were identified in different subplastidial compartments often remains hypothetical, ...

متن کامل

Update on chloroplast research: new tools, new topics, and new trends.

Chloroplasts, the green differentiation form of plastids, are the sites of photosynthesis and other important plant functions. Genetic and genomic technologies have greatly boosted the rate of discovery and functional characterization of chloroplast proteins during the past decade. Indeed, data obtained using high-throughput methodologies, in particular proteomics and transcriptomics, are now r...

متن کامل

Comparative Proteomics of Chloroplast Envelopes from C3 and C4 Plants Reveals Specific Adaptations of the Plastid Envelope to C4 Photosynthesis and Candidate Proteins Required for Maintaining C4 Metabolite Fluxes1[W][OA]

C4 plants have up to 10-fold higher apparent CO2 assimilation rates than the most productive C3 plants. This requires higher fluxes of metabolic intermediates across the chloroplast envelope membranes of C4 plants in comparison with those of C3 plants. In particular, the fluxes of metabolites involved in the biochemical inorganic carbon pump of C4 plants, such as malate, pyruvate, oxaloacetate,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of experimental botany

دوره 55 400  شماره 

صفحات  -

تاریخ انتشار 2004